

Beyond Caption To Narrative: 東京大学 THE UNIVERSITY OF TOKYO

Andrew Shin, Katsunori Ohnishi, Tatsuya Harada The University of Tokyo

Introduction

- Most works on video captioning focus on generating single sentence caption
- GOAL: to generate captions consisting of multiple sentences from multiple key frames to fully take advantage of richer contents in video
- Contributions:
- key frames are selected from segmenting the video by change of "action"
- generate caption for each frame, and connect them with natural language processing techniques
- Overall workflow.

Video						
↓						
Temporal Segmentation						
•	t					
Frame	Frame		Frame			
+	, <u> </u>			+		
CNN						
•	•			*		
RNN						
+	_	ŧ				
Caption		Caption		Caption		
ł	· · · ·			•		
Natural Language Processing						
+						
Narrative						

Temporal Segmentation

- Goal is to segment the video temporally, not to classify the actions
- Sliding window method and motion features only for temporal segmentation
- iDT to extract motion features
- UCF 101 to learn actions

- Temporal sliding windows of length 30.60.90. and 120 frames
- Slide the window in steps of 30 frames
- Re-score detected windows with nonmaximum suppression to remove overlapping
- To avoid redundant segmentation, we set a score threshold

-0.5 for Montreal dataset. -1.0 for MPII for roughly 2 frames per video

Backward Coreference Resolution

- After extracting middle frame from each segment, and generating captions:
- There are no anaphora, but repeated appearances of noun phrases as antecedent candidates
- Want to link the coreferences, then convert the later references to appropriate

- Assign gender tokens with Stanford CoreNLP for singular human subjects
- Run coreference resolution for non-singular or non-human references

Connective Word Generation

- Want to find appropriate transitions
- Hard to determine the number of classes and collect training data \rightarrow unsupervised way
- Collected 500 instances of adjacent sentences from Wikicorpus, with connective term in 2nd sentence
- Converted to 300-dim sentence2vec
- Simply match the generated captions with adjacent sentences by L2 distance, and insert the connective word present

Experiment

- Ist baseline: caption from single middle frame
- 2nd baseline: winner of LSMDC challenge
- Extract HOG, HOF, MBH along iDT, and encode with FV
- 1 vs. rest linear SVM with C=100
- Extract middle frame from each segment. and extract fc7 from VGG
- Pass CNN features to LSTM to generate captions, and apply backward coreference resolution and connective word generation

Dataset	Model	BLEU4	CIDEr	METEOR
Montreal	Mid-frame	0.003	0.070	0.042
	Ours	0.004	0.089	0.047
MPII	Mid-frame	0.009	0.065	0.046
	Ours	0.013	0.075	0.048
MS Video	Mid-frame	0.043	0.148	0.107
	Ours	0.063	0.177	0.104

Model	Avg. Length	BLEU4	CIDEr	METEOR
LSMDC [1]	5.33	0.006	0.092	0.058
Mid- frame	9.78	0.004	0.068	0.044
Ours	19.34	0.006	0.085	0.048

example from Montreal dataset

A woman is holding a A man is holding a box of A man and a woman are doughnuts. standing next to each other. plate of food.

> "A man is holding a box of doughnuts. Then he and a woman are standing next to each other. Then she is holding a plate of food."

Ground Truth With the table gone, all of the girls sit in their same seats, their travs on their laps. A man and a woman standing next to each Mid-frame

other

- Applicable to non-movie clips?
- Applied our method to subset of MS Video Description corpus with score threshold -0.1
- Compared the captions from sub-interval with ground truths

riding a wave on top of a surfboard. Then he on the surfboard in the water.

Conclusion

 Proposed a novel method for a story-like video captioning

Reference

• [1] Shetty and Laaksonen "Video captioning with recurrent networks based on frame and videolevel features and visual content classification" in ICCV Workshop on LSMDC 2015