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ABSTRACT
Improved dense trajectories (iDT) have shown great per-
formance in action recognition, and their combination with
the two-stream approach has achieved state-of-the-art per-
formance. It is, however, difficult for iDT to completely re-
move background trajectories from video with camera shak-
ing. Trajectories in less discriminative regions should be
given modest weights in order to create more discrimina-
tive local descriptors for action recognition. In addition, the
two-stream approach, which learns appearance and motion
information separately, cannot focus on motion in important
regions when extracting features from spatial convolutional
layers of the appearance network, and vice versa. In or-
der to address the above mentioned problems, we propose
a new local descriptor that pools a new convolutional layer
obtained from crossing two networks along iDT. This new
descriptor is calculated by applying discriminative weights
learned from one network to a convolutional layer of the
other network. Our method has achieved state-of-the-art
performance on ordinal action recognition datasets, 92.3%
on UCF101, and 66.2% on HMDB51.
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1. INTRODUCTION AND RELATED WORK
Video representation is becoming increasingly important

in today’s online environment in which a massive amount
of videos are uploaded on a daily basis. Various approaches
have been proposed to efficiently and accurately represent
the videos.
Dense trajectories [18] and improved dense trajectories

(iDT) [19] have dominated action recognition. Extracting
hand-crafted features [1, 10, 2] along these trajectories can
provide effective local descriptors, and encoding these local
descriptors with a Fisher vector (FV) [12] or a vector of
locally aggregated descriptors (VLAD) [6] can provide an
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Figure 1: Illustration of visualized iDT and feature
map from convolutional layer in temporal net. We
can see that there are some noisy trajectories in
background due to camera shaking.

effective video representation [7].
Fueled by the recent success of convolutional neural net-

works (CNN) in image classification, video representations
based on CNN have also been developed in action classifi-
cation. The two-stream approach [13] is one of the most
successful methods that learns appearance information and
motion information separately using one network whose in-
put is RGB and the other network whose input is optical
flow. The idea of this separate learning has been widely
used in later works [5, 20, 22, 23, 25, 26].

Aiming at fully end-to-end learning, three-dimensional CNN
learning methods that can capture spatial and temporal in-
formation simultaneously and automatically [16, 17] have
been developed recently. However, three-dimensional CNN
learning is still a very difficult task, and these methods have
not yet achieved comparable performance to the state-of-
the-art approach.

Trajectory-pooled deep-convolutional descriptors (TDD)
[20] have shown state-of-the-art performance in action recog-
nition by pooling convolutional two-stream layers along iDT.
Because the convolutional layer retains position information,
it is possible to combine it with iDT. However, TDD, which
is based on iDT and the two-stream approach, has two main
shortcomings: (1) as shown in Figure 1, iDT cannot com-
pletely remove the background image for videos captured
by a shaking camera. This can be solved by giving modest
weights to background trajectories. (2) Although each net-
work in the two-stream approach captures important infor-
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Figure 2: Illustration of the proposed local descriptors, named cross-stream pooled descriptors (CPD). After
extraction, we encode these descriptors layer by layer and classify each of them. We then obtain final scores
by simply summing all of their scores.

mation for action recognition, separate CNN learning some-
times lacks other important information that can be ob-
tained only when spatial and temporal information are com-
bined together.
For example, thinking about the action of pitching a ball,

it is difficult for spatial CNN to focus on the region around
the pitcher’s hand from only a single RGB image. This
shortcoming makes it difficult to discriminate between sim-
ilar actions such as the difference between a soccer penalty
kick and a field-hockey penalty shot, or between pitching a
ball, a cricket shoot, a tennis serve, and a volleyball spike,
especially when no background or context information is in
the movie. Although iDT helps to solve this problem when
recognizing action, iDT trajectories are hand-crafted so that
they still contain both discriminative and non-discriminative
trajectories. However, focusing on motion-important regions
helps to extract more discriminative appearance features.
When seeing a field hockey penalty, for example, the motion-
important region is around the shooter’s stick and the kip-
per. Extracting appearance features around these regions
enables us to better recognize whether the player uses their
own leg or the hockey stick or whether the kipper wears a
protector or not. This can be also said in the case where
spatial CNN and temporal CNN are reversed.
In order to address the above-mentioned problems, we uti-

lize both networks in a two-stream approach by crossing two
networks. Convolutional layers in spatial CNNs provide dis-
criminative appearance features with position information
while those in temporal CNNs provide discriminative mo-
tion features with position information. Thus, we propose
a new descriptor that uses one network for the weights and
gives these to the other network and pools along iDT, named
cross-stream pooled descriptors (CPD). This is equivalent
to pooling a convolutional layer of one network along iDT
weighted by the convolutional layer of the other network,
which leads to giving modest weights to iDTs in less discrim-
inative regions. Our method has improved the performance
of TDD on the ordinal action recognition datasets, UCF101
[15] and HMDB51 [8].

2. ACTION RECOGNITION REVISITED
In this section, we describe previous works on which our

method is based.

2.1 Improved Dense Trajectories
Improved dense trajectories (iDT) [19] are the improved

version of dense trajectories [18], which can remove dense
trajectories in background images considering camera mo-
tion. A video whose size is (Vx, Vy, T ) contains trajectories
P k (k = 1 . . .K):

P k = {(xk
1 , y

k
1 , t

k
1), (x

k
2 , y

k
2 , t

k
2), · · · , (xk

L, y
k
L, t

k
L)}, (1)

where K is the number of trajectories in a video, (xk
l , y

k
l , t

k
l )

is the position of the lth point in trajectory P k, and L is the
length of trajectory. Following other works [3, 9, 19, 20], we
set L = 15 in this paper.

2.2 Two-Stream Approach
The two-stream approach [13] is a method that learns spa-

tial information from RGB images and temporal information
from optical flow images with each CNN separately. Since
it is extremely difficult for a temporal net to learn motion
only with a single flow image, a sequence of ten frames are
used as input. In this paper, we call the network learned
from RGB images a ‘spatial network’ and a network learned
from optical flow images a ‘temporal network.’

2.3 Trajectory-Pooled Deep-Convolutional De-
scriptors

Trajectory-pooled deep-convolutional descriptors (TDD)
[20] combine iDT and the two-stream approach and achieves
state-of-the-art performance on the UCF101 dataset. Given
a ReLU applied convolutional layer C ∈ RX×Y ×N×T from
the two-stream approach, two normalization methods are
applied to C, where X and Y are the width and height of
the convolutional layer, N is the number of channels, T is
the length of the video, and C ≥ 0. Spatial normalization
provides that C̃st and channel normalization provides that
C̃ch:

C̃st(x, y, n, t) = C(x, y, n, t)/maxx,y,tC(x, y, n, t), (2)

C̃ch(x, y, n, t) = C(x, y, n, t)/maxnC(x, y, n, t), (3)

where (x, y) is the position of the convolutional layer, n is
the channel number of the convolutional layer, and t is the
time in the video.

These C̃st and C̃ch are pooled along iDT instead of the
originally pooled features (HOG [1], HOF [10], and MBH



[2]). Given a normalized convolutional layer C̃a
b , which is

the convolutional layer after applying spatiotemporal nor-
malization or channel normalization (b ∈ {st, ch}) from spa-
tial or temporal nets (a ∈ {sp, tmp}), proposed descriptors

TDD(P k, C̃a
b ) ∈ RN are obtained as follows:

TDD(P k, C̃a
b ) =

L∑

l=1

C̃a
b ((rx × xk

l ), (ry × yk
l ), t

k
l ), (4)

where (·) is the rounding operation and (rx, ry) = (X/Vw, Y/Vh).
These descriptors are encoded by FV. The final video repre-
sentation is obtained by concatenating encoded vectors from
both normalization methods.

3. IDT WITH THE CROSS STREAMS
As described to this point, separate CNN learning cannot

always focus on truly important regions to capture an ac-
tion’s characteristics. Additionally, improved dense trajec-
tories (iDT) cannot completely eliminate background trajec-
tories from videos whose capturing camera experiences large
motions. We address these problems to improve recognition
performance using two equivalent methods. In this section,
we describe both approaches in order to evaluate whether
each problem can be improved by each calculation.

3.1 Cross-Stream Pooling Along iDT
In order to enhance motion-important regions in a spa-

tial convolutional layer and appearance-important regions
in a temporal convolutional layer, we propose a new convo-
lutional layer for iDT pooling: the cross-stream layer. As
shown in Figure 2, we produce spatial and temporal con-
volutional layers element-wise and pool the resulting four-
dimensional matrix along iDT. We call this method cross-
stream pooled descriptors (CPD). However, since each of the
nth filters in Ctmp and Csp do not have the same meaning,
the simple element-wise product Ctmp(x, y, n, t)×Csp(x, y, n, t)
might not work well. A convolutional layer shows large ac-
tivation for discriminative regions. Thus, we can obtain a
discriminative weight map W ∈ RX×Y ×T by simply taking
the sum in the n-direction:

W tmp(x, y, t) =
N∑

n=1

C̃tmp(x, y, n, t), (5)

where C̃tmp is a normalized layer calculated from Ctmp as in
equations (2) and (3). With this motion-based weight map,
we can enhance the normalized spatial convolutional layer
C̃sp, which contains appearance information:

Dsp(x, y, n, t) = C̃sp(x, y, n, t)×W tmp(x, y, t). (6)

Dsp represents new appearance features enhanced by motion-
important regions.
Similarly to motion-based weights, we can obtain appearance-

based weights W sp from Csp, and Dtmp is calculated in the
same way. The term‘ cross stream ’originated from this
cross utilization of two networks.
We then pool thisD along iDT as in equation (4) to obtain

CPD(P k, Da
b ) ∈ RN as follows:

CPD(P k, Da
b ) =

L∑

l=1

Da
b ((rx × xk

l ), (ry × yk
l ), t

k
l ). (7)

Table 1: Performance of each layer type on the
UCF101 split1 dataset using parameters (D,K) =
(64, 128) for FV and (D,K) = (128, 64) for VLAD.

Convolutional layer type FV VLAD
(a) Spatial 81.2% 81.8%
(b) Temporal 84.7% 85.5%
TDD: (a) + (b) 90.7% 91.5%
(c) Spatial weighted by temporal 81.3% 82.9%
(d) Temporal weighted by spatial 85.3% 85.9%
CPD (ours): (c) + (d) 90.4% 91.6%
TDD + CPD (ours) 90.8% 92.0%

Table 2: The combination of convolutional layers
resulting in each network on the UCF101 split1
dataset when VLAD is applied using parameters
(D,K) = (128, 64). (a), (b), (c), and (d) represent
spatial, temporal, spatial weighted by temporal, and
temporal weighted by spatial cases.

(a) (b) (c) (d)
Conv3 71.9% 77.6% 74.1% 77.7%
Conv4 78.2% 82.2% 78.5% 82.0%
Conv5 76.3% 82.8% 75.7% 81.2%
Conv3 + Conv4 79.0% 82.5% 80.3% 83.2%
Conv4 + Conv5 81.3% 85.5% 81.5% 85.8%
Conv3 + Conv4 + Conv5 82.2% 85.8% 83.3% 86.5%

3.2 Two-Stream Pooling Along Weighted iDT
We next consider our method from a different point of

view. Cross-stream pooled descriptors (CPD) can also be
calculated as follows. In order to give modest weights to
trajectories in the background region, we take advantage of
the rest of the network. A convolutional layer Ctmp ob-
tained from a temporal CNN in the two-stream approach,
for example, has discriminative motion features without los-
ing position information. Using this Ctmp as the weight and
giving this weight to iDT, we can obtain new trajectories
that are emphasized if they are in the region that contains
motion-discriminative trajectories and are less emphasized if
they are in regions that contain less motion-discriminative
trajectories. As in equation (5), we obtain a discrimina-
tive weight map W tmp by taking the sum in the n-direction.
Each trajectory is weighted by this map W tmp; then, we can
obtain the weighted iDT. As for motion-based weights, an
iDT weighted by an appearance-based map is calculated in
the same way. We then pool the normalized convolutional
layer C̃a along the emphasized iDT whose weights are cal-
culated from W a and obtain the CPD as follows:

CPD(P k, C̃a
b ,W

a
b ) =

L∑

l=1

W a
b (x

k
l , y

k
l , t

k
l )× C̃a

b ((rx × xk
l ), (ry × yk

l ), t
k
l ).

(8)

This is equivalent to CPD(P k, Da
b ).

4. EXPERIMENTS
4.1 Datasets and Settings

We conducted experiments on widely used action recog-
nition datasets, UCF101 [15] and HMDB51 [8]. We chose
VGG16 [14] as our CNN and utilized publicly available mod-
els [21] that had been already trained on UCF101. Because
UCF101 has more variety of actions and videos, we used a
model learned on UCF101 split 1 as the initial model for
HMDB51 training.The learning rate and other training set-



Table 3: Mean accuracy of CPD and other baseline
methods on HMDB51 and UCF101. The score∗1 of
two-stream (VGG16) on HMDB51 in our calcula-
tion.
Algorithm HMDB51 UCF101
iDT & FV [19] 57.2% 85.9%
Two stream [13] 59.4% 88.0%
TDD & FV [20] 63.2% 90.3%
Two stream (VGG16) 61.9%∗1 91.4% [21]
Spatial net (VGG16 w/o flip&crop) 39.7% 75.5%
Temporal net (VGG16 w/o flip&crop) 53.6% 81.0%
Two stream (VGG16 w/o flip&crop) 59.3% 87.6%

TDD (VGG16) & FV 63.2% 91.3%
TDD (VGG16) & VLAD 65.0% 92.0%
CPD & VLAD (ours) 65.2% 91.8%
TDD (VGG16)

+
CPD (ours)

66.2% 92.3%
& VLAD & VLAD

tings were the same as the training settings for UCF101[21].
We chose the models that showed the best validation scores
during training.
As the convolutional layer for pooling, we chose conv3 3,

conv4 3, and conv5 3 from VGG16. We call these conv3,
conv4, and conv5 in this paper, respectively. A final video
representation of each layer was obtained by concatenating
st-normed and ch-normed Fisher vectors following TDD[20].
We fused SVM scores from each layer by taking the sum.
Note that, in consideration of the calculation cost, we did
not use multi-scale CNN, unlike TDD, and did not apply
flipping or cropping to input images, unlike the original two-
stream approach.

4.2 Analysis
Parameters and Coding Methods: We found the best

coding method and parameters for TDD and CPD with
UCF101 split1. Some previous works [7, 24] showed that
VLAD encoding is also effective for action recognition. Thus,
we tried both FV and VLAD for encoding. Through numer-
ous experiments, we found that the best parameters for FV
coding were (D,K) = (64, 128), and those for VLAD cod-
ing were (D,K) = (128, 64), where D is the dimension after
compression by PCA and K is the number of clusters. De-
tails are given in the supplemental material owing to limited
space here.
Convolutional Type Combination: Table 1 shows

that weighting the convolutional layer heightens accuracy
for every layer and method, and combining our method with
TDD improves the recognition accuracy of TDD. It is also
shown that VLAD is more effective for all convolutional layer
types than FV.
Layer Combination on Each Network: Table 2 presents

the combination patterns of convolutional layers in each net-
work. In all network types, we can see that using all layers
showed the best performance. Thus, we simply employed all
of them.

4.3 Evaluation of CPD
Table 3 represents the action accuracy of CPD and related

methods on UCF101 [15] and HMDB51 [8], which are widely
used action recognition datasets. Note that we did not flip
and crop input images when predicting, unlike the original
TDD. Although the two-stream approach of VGG16 without
flipping and cropping shows worse performance than that of
the original two-stream approach, as denoted in Table 3,
the performance of TDD with FV is improved by replacing
the CNN with VGG16. Encoding VLAD instead of FV also
improves recognition accuracy. We then combine the scores
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Figure 3: Sum of filter activations. We only
show spatial layer weighted by temporal, because
it will appear as the same image as temporal layer
weighted by spatial with this visualization method.

Table 4: Comparison with the state-of-the-art meth-
ods. The scores written inside of () is the accuracy
when combined with iDT & FV [19].

HMDB51 UCF101
iDT & FV [19] 57.2% iDT & FV [19] 85.9%
iDT & Stacked FV [11] 56.2% C3D [17] 85.2%
+ iDT & FV (66.8%) + iDT & FV (90.4%)

FSTCN [16] 59.1% FSTCN [16] 88.1%
LATE [3] 62.2% MIFS [9] 89.1%
TDD & FV [20] 63.2% TDD & FV [20] 90.3%
+ iDT & FV (65.9%) + iDT & FV (91.5%)

Video darwin [4] 63.7% Hybrid LSTM [23] 91.3%
MIFS [9] 65.1% Two stream (VGG16) [21] 91.4%
CPD (ours) 65.2% CPD (ours) 91.8%
TDD + CPD (ours) 66.2% TDD + CPD (ours) 92.3%

of this TDD using VLAD with those of CPD, which increases
the performance of TDD both on UCF101 and HMDB51.

Fig. 3 shows an example of the visualized iDTs and convo-
lutional layer activation. We can see that the spatial convo-
lutional layer shows activation on many other objects whilst
the convolutional layer weighted by the temporal convolu-
tional layer shows activation mainly of the players. It can
also be seen that some background iDTs still remain in the
image due to camera shaking. However, the spatial layer
weighted by the temporal layer activates mainly over the
shooter and the kipper, ignoring their backgrounds. Thus,
we can confirm that our method extracts appearance in-
formation mainly from motion-important regions and that
these features capture different characteristics from those of
TDD, which augments recognition performance.

4.4 Comparison with state-of-the-art
Table 4 shows the comparison of our method with other

methods of action recognition on the UCF101 and HMDB51
datasets. On UCF101, the proposed method achieved state-
of-the-art performance: 0.8% improvement over the combi-
nation of TDD [20] and iDT [19]. On HDMB51, our method
achieved comparable performance to state-of-the-art meth-
ods. Considering the scores without adding iDT & FV [19],
our method shows the best performance.

5. CONCLUSION
This study proposed a new type of local descriptors for

action recognition, termed cross-stream pooled descriptors
(CPD), that pools crossed convolutional layers along iDT.
Our method achieved state-of-the-art performance on the
widely used action recognition datasets UCF101 and HMDB51.
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