

Improved Dense Trajectory with Cross Streams Katsunori Ohnishi, Masatoshi Hidaka, Tatsuya Harada The University of Tokyo

Introduction:

Visualized iDT and feature map from convolutional layer in temporal net.

- Topic: action recognition
- Existing works:
- > iDT [H. Wang, et al., ICCV13] removes dense trajectories in background images considering camera motion.
- Two-stream [K. Simonyan, et al., NIPS14] separately learns two CNNs, spatial net with RGB and temporal net with optical flow.
- > TDD [L. Wang, et al., CVPR15] combines iDT and Twostream.
- **D** Two main shortcomings in existing works
- 1. iDT cannot completely remove the background trajectories from videos captured by a shaking camera
- 2. Separate CNN learning sometimes lacks other important information that can be obtained only

• TDD [L. Wang, et al., CVPR15]

$$TDD(P^{k}, \tilde{C}_{b}^{a}) = \sum_{l=1}^{L} \tilde{C}_{b}^{a}((r_{x} \times x_{l}^{k}), (r_{y} \times y_{l}^{k}), t_{l}^{k})$$

 $\tilde{C}_{st}(x, y, n, t) = C(x, y, n, t) / \max_{\substack{x, y, t}} C(x, y, n, t)$ $\tilde{C}_{ch}(x, y, n, t) = C(x, y, n, t) / \max_{n} C(x, y, n, t)$ $(r_x, r_y) = (X/V_W, Y/V_h)$ Trajectory point: (x_l^k, y_l^k, t_l^k) $a \in \{sp, tmp\}$ $b \in \{st, ch\}$ $C \in \mathbb{R}^{X \times Y \times N \times T}$

Instead of originally pooled features (HOG, HOF, and MBH), TDD pools normalized convolutional layers along iDT.

Cross-stream pooled descriptors (CPD)

$$CPD(P^{k}, \tilde{C}^{a}_{b}, W^{\bar{a}}_{b}) = \sum_{l=1}^{L} W^{\bar{a}}_{b}(x^{k}_{l}, y^{k}_{l}, t^{k}_{l}) \times \tilde{C}^{a}_{b}((r_{x} \times x^{k}_{l}), (r_{y} \times y^{k}_{l}), t^{k}_{l})$$
$$W^{a}_{b}(x, y, t) = \sum_{n=1}^{N} \tilde{C}^{a}_{b}(x, y, n, t)$$

when spatial and temporal information are combined together

Goal:

Design a new descriptor that contains complementary information between spatial and temporal networks for action recognition

CPD multiplies spatial and temporal convolutional layers element-wise and pools the resulting four-dimensional matrix along iDT.

In order to enhance motion-important regions in a spatial convolutional layer and appearance-important regions in a temporal convolutional layer.

Experiment:

- Dataset
- ➤ UCF101

101 classes, 13k videos

HMDB51

51classes, 6.8k videos

Mean accuracy of CPD and other baseline methods on HMDB51 and UCF101 *1: L. Wang, et al., arXiv:1507.02159, 2015.

Sum of filter activations

Spatial conv4 weighted by temporal conv4

Optical flow-x

Temporal conv4 ST. normalized

Comparison with the state of the art methods

Algorithm	HMDB51	UCF101	Companson with the state-of-the-art methods			
idt & FV	57.2%	85.9%	HMDB51		UCF101	
Two-stream	59.4%	88.0%	idt & FV	57.2%	idt & FV	85.9%
TDD & FV	63.2%	90.3%	iDT & stacked FV [X. Peng, et al., ECCV14]	56.2%	C3D [D. Tran, et al., ICCV15]	85.2%
Two stream (VGG16)	61.9%	91.4% *1	+ iDT & FV	(66.8%)	+iDT & FV	(90.4%)
Spatial net (VGG16 w/o flip&crop)	39.7%	75.5%	F _{ST} CN [L. Sun, et al., ICCV15]	59.1%	F _{ST} CN	88.1%
Temporal net (VGG16 w/o flip&crop)	53.6%	81.0%	LATE [C. Feichtenhofer, et al., CVPR15]	62.2%	MIFS	89.1%
Two stream (VGG16 w/o flip&crop)	59.3%	87.6%	TDD & FV	63.2%	TDD & FV	90.3%
TDD (VGG16) & FV	63.2%	91.3%	+iDT & FV	(65.9%)	+ iDT & FV	(91.5%)
TDD (VGG16) & VLAD	65.0%	92.0%	Video darwin [B. Fernando, et al., CVPR15]	63.7%	Hybrid LSTM [Z. Wu, et al., ACMMM15]	91.3%
CPD & VLAD (ours)	65.2%	91.8%	MIFS [Z. Lan, et al., CVPR15]	65.1%	Two stream (VGG16)	91.4%
TDD (VGG16) + CPD (ours) & VLAD + & VLAD	66.2%	92.3%	CPD (ours)	65.2%	CPD (ours)	91.8%
			TDD + CPD (ours)	66.2%	TDD + CPD (ours)	92.3%